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Abstract—Despite advancements in the Open-Radio Access
Network (O-RAN) architecture and its applications, handover
management remains a use case without a comprehensive
methodology for orchestrating seamless cell transitions within the
O-RAN context. Existing predictive handover algorithms have
not been designed or tested with scalability in mind, which is
crucial for large-scale cellular networks where a Radio Intelligent
Controller (RIC) can manage multiple distributed cells. In
addition, their static architecture limits adaptability to dynamic
conditions, making them irresponsive and impractical for real-
world deployments. To address these challenges, we propose an
algorithm that complies with O-RAN standards and features
a flexible architecture, implemented as an xApp in the Near
Real-Time RIC, to facilitate high-accuracy predictive handover
decisions. We demonstrate that our algorithm outperforms state-
of-the-art predictive handover algorithms, achieving over 95%
classification accuracy even in large-scale networks and reducing
the number of handovers compared to traditional handover
algorithms. Finally, it effectively adapts to dynamic environments
with a varying number of base stations, requiring at least 30%
less retraining time while maintaining high classification rates.

Index Terms—5G, Radio Access Network, Machine Learning

I. INTRODUCTION

Next-Generation (NextG) cellular networks are evolving
into more disaggregated, virtualized, programmable, and open
systems to meet increasing traffic demands and to support
the provision of new services [1]. For instance, the Open
Radio Access Network (O-RAN) architecture, proposed and
standardized by the O-RAN Alliance, is a new RAN archi-
tecture that embraces disaggregation and openness to reduce
operational and capital costs, promotes multi-vendor interop-
erability, and enables the integration of Artificial Intelligence
and Machine Learning (AI/ML) capabilities in the RAN for
network optimization [2], [3].

The O-RAN Alliance is continually proposing and refining
use cases to promote this open architecture [5]. One use
case that has been identified is the handover management,
which remains a critical area of academic focus. Handover
management is not a new network related problem; it has
been studied since the days of 2G networks and involves
transferring an active connection from one Base Station (BS)
to another to maintain seamless service continuity. Despite
extensive research, handover optimization in NextG networks
remains an open problem [1], [2], [5] due to new and unex-
plored challenges [3], such as: 1) network densification and
access heterogeneity; 2) utilization of new frequency bands
(e.g., mmWave and THz); 3) emergence of ultra-reliable, low-
latency services with minimal interruption time; 4) dynamic,

high-speed user mobility; and 5) integration of non-terrestrial
and terrestrial networks —all of which further complicate
handover decision-making.

In recent years, significant research efforts have focused on
data-driven approaches, specifically applying ML techniques
in handover optimization due to their powerful ability to
accurately model the handover decision process and adapt
to complex, dynamic, and temporal network conditions [4].
Predictive handover management has gained a lot of attention
[6-10], due to its potential to enhance user experience by
minimizing service interruptions during mobility. For instance,
in [6] and [7], the authors proposed Deep Neural Network
(DNN) architectures to predict radio link failures and early
handovers. In [8], the authors introduced new Long Short-
Term Memory (LSTM) based architectures to predict future
channel quality reference signals. Similarly, in [9], a Recurrent
Neural Network (RNN) architecture is presented to learn the
optimal timing and destination BS for initiating handovers.
Finally, in [11], the authors formulated a joint connection
management and load balancing problem and solved it using
Deep Reinforcement Learning (DRL) techniques.

Despite the contributions of these works, there is still
progress to be made. Although the O-RAN architecture has
matured since its introduction in 2018, a comprehensive
methodology for handover management within the O-RAN
context still remains absent. While the work in [11] addresses
several issues in that direction, it lacks details on data col-
lection, model training, and deployment within the O-RAN
context. Second, while many predictive handover algorithms
exist in the literature [6-10], none of them have been evaluated
in scenarios where scalability is a real concern, neglecting the
fact that, in production cellular networks, a RAN Intelligent
Controller (RIC) can control multiple distributed cells. Finally,
a significant gap remains in testing and evaluating these
approaches in scenarios where dynamic events can occur, po-
tentially impacting both the RAN topology and the algorithm
architectures in real time. For instance, in NextG networks,
Unmanned Aerial Vehicles (UAV) mounted BSs are expected
to be deployed during short-term traffic surges, such as social
events, to boost network capacity [12]. As a result, these
algorithms must be inherently designed with flexible architec-
tures capable of adapting to dynamic network environments
without complete retraining, as frequent retraining with each
topology change is computationally inefficient and impractical
for production cellular networks.



A. Methodology and Contributions

To address the aforementioned challenges, we propose a
predictive handover algorithm with an adaptable architecture
consisting of three components: 1) Encoder – a flexible DNN
with a dynamic input size that scales linearly with the number
of active BSs connected to the RIC; 2) Stacked LSTM Compo-
nent – a multi-layer LSTM model designed to extract and learn
complex temporal patterns; and 3) Decoder – a configurable
DNN with a dynamic output size that generates a probability
distribution across cells, enabling the selection of the optimal
BS for handover in the near future. We demonstrate how our
architecture can predict the optimal cell based on temporal
UE channel quality measurements (note that our architecture
also enables the introduction of dynamic features if needed).
We formulate it as a multi-class classification problem, where
the objective is to minimize the cross-entropy loss between
the predicted class (i.e., the predicted BS to connect to) and
the actual class (ground truth BS). Finally, we show that
our algorithm achieves high classification performance (more
than 95% accuracy) even in large-scale networks and can be
utilized in dynamic networks where the number of BSs rapidly
changes with minimal retraining time while preserving high
accuracy rates. Overall, the contribution of this paper can be
summarized as follows:
1) Methodology: We present a comprehensive methodology
outlining the implementation steps of a predictive handover
algorithm within the O-RAN context.
2) Prediction Algorithm: We propose a DL-based algorithm
compliant with O-RAN specifications for predictive handover
management. We find that our approach achieves better predic-
tion performance than four popular state-of-the-art handover
prediction algorithms for large-scale RAN.
3) Architecture: We design a novel and adaptable architecture
that can adjust to a dynamic number of BSs, reducing re-
training time by applying transfer learning techniques to reuse
learned weights in the updated model while maintaining high
classification performance.

II. BACKGROUND

A. Brief Introduction to O-RAN

O-RAN embraces the RAN disaggregation by splitting the
monolithic BS into three functional units: the Central Unit
(CU), Distributed Unit (DU), and Radio Unit (RU) [2]. The
CU is responsible for functions such as radio resource control,
connection management, and encryption while the DU man-
ages real-time functions, including resource scheduling and er-
ror correction. The RU handles the transmission and reception
of radio signals. The CU and DU, referred commonly as E2
nodes, are interconnected with software-based RICs via open
interfaces. This enables telemetry data streaming from the E2
nodes and the implementation of closed loop control actions
and policies using ML algorithms to optimize the RAN. There
are two types of RICs that manage and control the RAN: the
Near-Real-Time RIC, which operates on time scales between
10 milliseconds and 1 second and connects to the E2 nodes via

the E2 interface, and the Non-Real-Time RIC, which operates
on time scales greater than 1 second and can receive data from
any functional unit of the BS through the O1 interface. ML
models that are deployed in the Near-RT-RIC are called xApps,
while those in the Non-RT RIC are called rApps. Each xApp
can subscribe to specific RAN functions that are published
from the E2 nodes to receive data that can be useful for
predictions or to send control actions to the RAN. For instance,
an xApp can utilize an E2 Service Model (E2SM) to receive
Key Performance Metrics from the E2 nodes (E2SM-KPM) or
to send a RAN Control action (E2SM-RC). With that way, a
ML model can actually control the RAN and make adaptive
decisions based on real-time network conditions.

B. Conventional Handover Procedure in 3GPP

According to the 3GPP technical specification [15], the
handover procedure involves several key steps. Each BS first
calculates a Handover Margin (HOM) value, which is then
transmitted to all User Equipments (UEs). When a UE detects
that the Reference Signal Received Power (RSRP) from a
neighboring BS exceeds that of its serving BS by at least the
specified HOM for a duration known as the Time To Trigger
(TTT), it generates and sends a measurement report to the
serving BS. Upon receiving this report, the current serving
BS determines the optimal target BS to which the UE should
be handed over, thereby completing the handover process.
Despite its advantages, this procedure is highly sensitive to
the selected handover triggering parameters: TTT and HOM.
Low values for these parameters can lead to an increase in
unnecessary handovers, while higher values may result in radio
link failures.

III. MODEL AND NETWORK DESCRIPTION

A. Model Design

To avoid unnecessary handovers that are highly correlated
with the selection of the triggering parameters, we propose a
UE-centric predictive handover algorithm that utilizes tempo-
ral RSRP measurements, to predict the future cell association
of a UE. Our algorithm can be easily implemented as an
xApp in the Near-RT RIC, utilizing two E2SMs: E2SM-KPM
for collecting RSRP measurements and E2SM-RC to send
control actions to the E2 nodes whenever handover requests
need to be initiated. Building on this approach, we formalize
the process as follows: given a temporal sequence of channel
quality measurements (RSRP) X1,N (t−K − 1), . . . , X1,N (t)
collected over the past K > 0 time slots from N cells, we
propose a model that can predict the UE cell association vector
C1,N (t+1), . . . , C1,N (t+W ) in the subsequent time window
W . The dataset of input/output features (RSRP sequences/cell
associations) can be easily built by the Near-RT-RIC, which
processes the time series of RSRP measurements using a
sliding window approach. We emphasize that this objective
represents a multi-class classification task that can be effec-
tively addressed by our model.

In addition, we design our model with a flexible architecture
to address dynamic and heterogeneous RAN environments,



Fig. 1: Our proposed predictive handover algorithm is implemented as an xApp in the near-RT RIC.

where the number of cells vary over time. In this work, we
focus on dynamic events that increase the number of BSs in the
RAN resulting from the deployment of new UAV BSs within
the cellular network. Evidently, a similar procedure can be
followed when BSs are removed from the network. We assume
that the addition of BSs can occur in random time intervals
after our model has been trained. Furthermore, we assume that
the placement of the new BSs is carefully managed to prevent
overlap with existing cells. These dynamic events introduce
variability in the input/output size of our model, which can
potentially impact its performance during inference. To ad-
dress this challenge, our architecture utilizes transfer learning
techniques, leveraging previously learned weights to minimize
retraining time while ensuring satisfactory performance.

B. Model Architecture
Based on the previous discussion, our architecture com-

prises three components: the Encoder, the Stacked Long
Short-Term Memory (S-LSTM) layers, and the Decoder, as
illustrated in the right part of Fig. 1. The Encoder is designed
to dynamically adjust its input size during dynamic events
and consists of three fully connected Multi-Layer Perceptrons
(MLPs), each with 128 neurons, followed by a ReLU acti-
vation function. It encodes the input temporal sequence into
a higher-dimensional space, enabling flexible management of
variations in input size. Additionally, the Encoder produces a
fixed-size output that the S-LSTM layers use as input, which
is shared across all the LSTM cells. We introduce the Encoder
before the S-LSTM layers to minimize the retraining time of
our model. When dynamic events occur, retraining the Encoder
is more time-efficient than retraining the complex stacked
LSTM structure. By focusing on retraining the Encoder, we
anticipate that the weights of the S-LSTM layers will stay
relatively stable, thereby minimizing the overall retraining
needed for these layers. Regarding the S-LSTM component,
it consists of two stacked layers, each featuring a hidden size
of 128 neurons, aimed at learning complex temporal patterns
and extracting valuable features. The outputs from the S-
LSTM layers serve as inputs for the Decoder, enabling it to

produce the model’s final predictions. Finally, the Decoder
is a fully connected MLP with a number of neurons equal
to the number of active cells in the network. It uses the
last hidden state from the final S-LSTM layer, followed by
a softmax layer that generates a probability distribution over
all the cells in the network. The Decoder also has a dynamic
structure (varying number of neurons) to adapt to changes in
the number of cells during dynamic events. Leveraging this
probability distribution, our model can determine future cell
associations for the UE by selecting the cell with the highest
probability. Note that a network operator can further refine
this distribution to enhance decision-making by establishing a
threshold before sending control actions to the serving BS for
initiating a handover request to the predicted BS.

C. Network Model
We examine a heterogeneous RAN composed of a number

of disaggregated BSs, denoted as N , which provide network
access to end users. We consider two types of cells: a macro
cell that operates in the n5 Frequency Division Duplexing
(FDD) 5G band with a central frequency f1 of 850 MHz,
and a micro cell that operates in the n79 Time Division
Duplexing (TDD) 5G band with a central frequency f2 of 4.5
GHz. In this access network, we assume that a macro cell is
deployed to provide wide coverage over an urban area, while
the remaining N − 1 cells are micro-cells that are deployed
within this geographical area to enhance network capacity in
regions with high user density, as illustrated in the left part of
Fig. 1. In this setup, we assume that the RU of the macro cell
is deployed on a tall building at a height of 25 m, characterized
by an Urban Macro (UMa) Non-Line-of-Sight (NLOS) path
loss model (13.54 + 39.08 · log10(d) + 20 · log10(f1)) [14],
where d is the 3D distance between the RU and a UE. The
macro BS operates with a transmission power of 40 dBm
and uses an omnidirectional antenna with a gain of 3 dBi.
On the other site, the RU of each micro cell is deployed
on a UAV at a fixed location height of 80 m, and it is
characterized by an Urban Micro (UMi) LOS path loss model
(32.4 + 21 · log10(d) + 20 · log10(f2)) [14]. To simulate



more realistic path losses due to signal degradation from
environmental factors, we included shadow fading with a
standard deviation of 7 dB for the macro cell and 4 dB for
the micro cells. Each micro BS operates with a transmission
power of 10 dBm, and uses an omnidirectional antenna with
a gain of 1 dBi. Finally, each UE has a RU at a height of 1.5
m and can access the network if the received power from a
cell exceeds -110 dBm. Based on these network parameters,
the macro cell can serve users within a maximum radius of 5
km, while each micro cell serves up to 0.5 km. Consequently,
within one macro cell, up to 75 non-overlapping micro cells
can be placed to create various simulated heterogeneous RAN
deployments. In this work, interference between micro cells
is not considered due to their non-overlapping placement and
the LOS connectivity between the RUs and end users.

D. Data Collection

The next step is to generate high-quality data for training
our model. We consider a scenario, commonly known in the
telecom world as drive test, where instead of a real technical
crew taking measurements of reference signals across all the
geographical area, we use a simulated UE that traverses all
the cells and reports channel quality metrics to fingerprint the
radio environment. In our simulations, we adopt a random
mobility model, with the UE traveling at a speed of 60 km/h
across the entire geographic area for an extended duration (24
hours). The UE measures the received power (RSRP) for all
cells, with a sampling period of 50 ms. In addition, the serving
E2 node reports to the Near-RT RIC the current serving cell.
In our simulations, we set the HOM to 0 dB and the TTT
to 500 ms. Therefore, every 50 ms, the UE reports to the
serving E2 node a feature vector X1,N (t) containing all the
measured signals from the cells, while the serving E2 node
reports a one-hot encoded vector C1,N (t) indicating which
cell the UE is currently connected to. These measurements are
aggregated to the Near-RT RIC and afterwards to our xApp
via the E2 interface. With this procedure, we generate a large
dataset (10 GB in size) with temporal RSRP measurements
and cell associations (classes) that can be used to train our
model. Note that by implementing this procedure, we can
seamlessly integrate new features into our xApp as needed.
Each measurement step can be parameterized with different
numbers of cells, channel quality metrics, handover triggering
parameters, and sampling rates, allowing us to explore various
network configurations.

E. Model Training

To train our model, we split our collected dataset into sliding
windows containing K temporal RSRP measurements from all
deployed N cells, resulting in a feature vector size of XK,N .
This data is then flattened into a one-dimensional vector
X1,K×N prior to inputting it into the Encoder. To generate the
label for each sliding window, we identify the most frequently
associated cell for the UE during the subsequent W measure-
ments and replicate this label across the entire window. This
strategy enables our model to effectively filter unnecessary

handovers, thus reducing the overall number of handovers
to BSs. After constructing the sliding windows, we split the
dataset into training and testing sets in a 70/30 ratio, allocating
70% of the data for training and 30% for testing. To optimize
our model, we conducted hyperparameter tuning to identify the
best parameters and architecture. Following this, we trained the
model using the cross-entropy loss function with a batch size
of 256, a learning rate of 0.0001, and employed a standard
scaler for feature normalization. Finally to avoid overfitting
during training, we employed batch normalization and dropout
to our model. More details regarding our model training
procedure can be found in Algorithm 1.

Algorithm 1 Model Training
Input: Randomized parameters θ of our model, learning rate
η, batch size B, number of epochs E, number of batches
Nbatches, ground truth labels YW,N

Output: learned parameters θ of the model
for e = 1 to E do

for b = 1 to Nbatches do
Xscaled ← Scaler(XK,N )
Xencoded ← Encoder(Xscaled)
XS-LSTM ← S-LSTM(Xencoded)
CW,N ← Decoder(XS-LSTM)

L(θ)← − 1
B

∑B
i=1

∑N
j=1 Yi,j log(Ci,j(θ))

via Back Propagation Through Time.
Update θ ← θ − η∇θL.

end for
end for

IV. EVALUATION RESULTS

A. Performance Benchmarking

We evaluated the performance of our model in this multi-
class classification problem by comparing it with four state-of-
the-art predictive handover algorithms proposed in the litera-
ture. For a fair comparison, we utilized a uniform architecture
across all algorithms, consisting of three layers with 128
neurons each, followed by a ReLU activation function. The
learning rate was set to 0.0001, and the batch size was 256.
More specifically, we compare our model with:
1) LSTM-based Predictive Handover Algorithm: This model
utilizes stacked LSTM layers to predict cell association in the
next time window [8].
2) Gated Recurrent Unit (GRU)-based Predictive Handover
Algorithm: This algorithm leverages GRU as the learning
component for estimating the cell association sequence [10].
3) RNN-based Predictive Handover Algorithm: Predictions are
generated using a deep RNN architecture, as proposed in [9].
4) MLP-based Predictive Handover Algorithm: In these works
[6], [7], a fully connected MLP is utilized for handover
predictions, using features from K previous measurements.
Table I summarizes the experiments performed with differ-
ent configurations, varying the number of cells N , temporal
windows K, and W . For each scenario, random UE paths



(a) UE mobility scenario. (b) Cell associations over time. (c) Reduction in number of handovers.

Fig. 2: Performance evaluation showcasing (a) the UE mobility scenario, (b) the dynamic cell associations over time, and (c)
the corresponding reduction in the number of handovers.

were selected for a duration of 1000 seconds, characterized
by random mobility patterns, an average velocity of 60 km/h,
and a sampling rate of 50 ms. Given the imbalanced nature
of our dataset, we prioritize precision as a key performance
metric alongside accuracy, recall, and F1 score to provide a
comprehensive assessment of the predictive algorithms. As
shown in Table 1, our algorithm consistently outperforms
all other predictive algorithms across all metrics for every
configuration tested. Notably, our model achieves higher pre-
cision, recall, and F1 scores, indicating its ability to accurately
predict cell associations while minimizing false positives and
negatives. The results also illustrate that our algorithm is
highly scalable across different numbers of deployed cells.
Even as the number of cells increases, our model maintains
nearly perfect performance, showcasing its efficiency, and
scalability.

B. Reducing Unnecessary Handovers

Leveraging the improved performance of our algorithm
against the state-of-the-art methods, we assess its effectiveness
in reducing unnecessary handovers, compared to the conven-
tional 3GPP handover algorithm (referred to as the vanilla
handover algorithm in Fig.2) outlined in Section II.B. We
examine a scenario with 21 cells deployed in the RAN, where
the deployment of cells and the UE’s mobility path are shown
in Fig. 2a. For this setup, the algorithm’s performance is tested
across different values of K and W (10, 30, and 60). As illus-
trated in Fig. 2b, an example with K,W = 10 demonstrates
that our algorithm effectively reduces unnecessary handovers
during the UE’s mobility path. In addition, we show in Fig.
3a that the number of handovers is minimized across various
temporal window sizes. Notably, our algorithm significantly
decreases the number of handovers while maintaining a con-
sistent average RSRP value for the UE throughout its mobility.

C. Learning in Dynamic Environments

Finally, we examine the retraining time gains of our model
in response to dynamic events that may alter the total number
of deployed cells in the network while our algorithm is
deployed in the Near-RT RIC for inference. To facilitate

N K,W Method Metrics
Accuracy Precision Recall F1 Score

21

10

Our Model 0.94 0.93 0.92 0.93
LSTM 0.87 0.82 0.78 0.79
GRU 0.85 0.83 0.77 0.78
RNN 0.84 0.79 0.76 0.76
MLP 0.85 0.81 0.72 0.75

30

Our Model 0.96 0.94 0.95 0.94
LSTM 0.90 0.89 0.84 0.85
GRU 0.91 0.91 0.83 0.85
RNN 0.88 0.83 0.78 0.79
MLP 0.83 0.75 0.72 0.73

60

Our Model 0.98 0.97 0.97 0.96
LSTM 0.93 0.89 0.90 0.90
GRU 0.94 0.93 0.92 0.91
RNN 0.83 0.69 0.67 0.67
MLP 0.81 0.74 0.68 0.69

36

10

Our Model 0.94 0.92 0.93 0.93
LSTM 0.86 0.83 0.78 0.79
GRU 0.85 0.85 0.77 0.78
RNN 0.85 0.79 0.74 0.76
MLP 0.83 0.72 0.71 0.70

30

Our Model 0.95 0.94 0.95 0.95
LSTM 0.90 0.89 0.83 0.85
GRU 0.89 0.88 0.80 0.81
RNN 0.87 0.83 0.79 0.80
MLP 0.81 0.75 0.69 0.69

60

Our Model 0.97 0.96 0.95 0.94
LSTM 0.92 0.89 0.86 0.87
GRU 0.91 0.91 0.86 0.88
RNN 0.80 0.76 0.72 0.73
MLP 0.79 0.73 0.70 0.70

51

10

Our Model 0.93 0.92 0.89 0.90
LSTM 0.85 0.78 0.75 0.75
GRU 0.84 0.78 0.73 0.75
RNN 0.83 0.75 0.73 0.74
MLP 0.79 0.72 0.67 0.68

30

Our Model 0.96 0.94 0.94 0.93
LSTM 0.87 0.85 0.80 0.81
GRU 0.88 0.80 0.78 0.79
RNN 0.85 0.78 0.75 0.76
MLP 0.76 0.72 0.70 0.70

60

Our Model 0.97 0.97 0.96 0.96
LSTM 0.89 0.88 0.85 0.86
GRU 0.90 0.88 0.85 0.86
RNN 0.74 0.58 0.52 0.53
MLP 0.72 0.58 0.52 0.54

TABLE I: Performance Evaluation.

fast retraining of our model, we utilize transfer learning by
applying the previous weights to the new model, allowing
for quicker adaptation to changing network conditions while
preserving previously learned knowledge, as described in
Algorithm 2. We demonstrate this with an example illustrated



in Fig. 3, where we initially assume that our model has been
deployed for inference in the Near-RT RIC for a RAN with
N = 41 cells. At a random moment, new M = 4 UAV
BSs are introduced at random locations within the macro cell.
As shown in Fig. 3, our adaptable architecture reduces the
retraining time by approximately 50% while maintaining high
accuracy (green line) compared to the alternative approach
of training from scratch (red line, N = 45). Finally, Table
II shows the retraining time improvements achieved by our
architecture across various initial network configurations and
dynamic additions of UAV BSs in the RAN. As it can be seen,
in all cases, our adaptable architecture reduces the retraining
time by at least 30%.

Algorithm 2 Fast Retraining Through Transfer Learning
Input: Pre-trained model parameters θpre-trained, initial number
of cells N , number of added cells M after the dynamic event,
first Encoder’s hidden layer hl1, last S-LSTM Component’s
hidden state hlstm.
Output: Updated parameters θ of the model.

1: Load the pre-trained model from the xApp catalog.
2: Set model parameters θ ← θpre-trained.
3: Deploy the model in the Near-RT RIC for inference.
4: Monitor the number of cells in the system.
5: if dynamic event occurs then
6: Update the Encoder’s input layer:
7: model.Enc1← Linear(N +M,hl1)
8: Update the Decoder’s output layer:
9: model.Dec1← Linear(hlstm, N +M)

10: Randomize weights for newly added cells.
11: Transfer previous S-LSTM weights to the new model.
12: end if
13: Retrain the updated model using Algorithm 1.

N 21 21 21 31 31 31 41 41 41

M 4 8 10 4 8 10 4 8 10

Reduction in Retraining Time 52% 36% 30% 47% 43% 40% 48% 42% 40%

TABLE II: Reduction in retraining time across different initial
numbers of cells N and dynamically inserted base stations M .

V. CONCLUSIONS

In this paper, we addressed the predictive handover man-
agement problem by proposing an adaptable architecture that
estimates the optimal BS based on temporal UE channel
quality measurements. We formulated the problem as a multi-
class classification task, minimizing the error between the
predicted and actual BS. Evaluation results showed that our
algorithm achieved over 95% accuracy, outperforming state-of-
the-art methods, and remained effective even in large, rapidly
changing networks with minimal retraining time required.
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