D2Q Synchronizer: Distributed SDN
Synchronization for Time Sensitive Applications

Toannis Panitsas, Akrit Mudvari, Leandros Tassiulas
Department of Electrical and Computer Engineering, Yale University

Abstract—In distributed Software-Defined Networking (SDN),
distributed SDN controllers require synchronization to maintain
a global network state. Despite the availability of synchronization
policies for distributed SDN architectures, most policies do not
consider joint optimization of network and user performance. In
this work, we propose a reinforcement learning-based algorithm
called D2Q Synchronizer, to minimize long-term network costs
by strategically offloading time-sensitive tasks to cost-effective
edge servers while satisfying the latency requirements for all
tasks. Evaluation results demonstrate the superiority of our
synchronizer compared to heuristic and other learning policies in
literature, by reducing network costs by at least 45% and 10%,
respectively, while ensuring the QoS requirements for all user
tasks across dynamic and multi-domain SDN networks.

Index Terms—Software-Defined Networking (SDN), Reinforce-
ment Learning (RL)

I. INTRODUCTION

Software-Defined Networking (SDN) introduced a ground-
breaking shift in network architecture by decoupling the
control from the data plane, which were traditionally tightly
integrated into the same networking device [1]. With this
separation and the centralization of the control plane, stan-
dardized interfaces were introduced to transport control actions
and data, enabling programmable control over the underlying
network infrastructure. Leveraging this architecture, network
operators have deployed a range of SDN applications designed
to enhance the performance and security of the network,
including load balancing, dynamic routing, and software-
based firewall applications. These applications are hosted on
commercial off-the-shelf commodity servers known as SDN
controllers and enable network programmability and recon-
figurability, thereby offering network administrators increased
flexibility to monitor, control, and secure their network.

Although this centralized architecture offers substantial ben-
efits, a distributed SDN architecture with multiple indepen-
dent controllers managing individual network domains has
been proposed to enhance scalability and fault tolerance [2].
These controllers operate in a logically-centralized manner
by periodically exchanging their network states to create a
consistent view of the network, a process known as controller
synchronization. In large-scale networks, complete synchro-
nization among controllers is often cost-prohibitive due to the
significant communication overhead in the control plane. As
a result, partial synchronization is employed, accepting tem-
porary inconsistencies in the controllers’ states whenever such
inconsistencies are deemed acceptable, a concept commonly
referred to as the eventual consistency model [3].

e

Northbound
API

Application
plane

=
Routing

Synchronization

Control
plane

" sDN
Controller

API

_ server

Domain 3

Domain 1

|€

Fig. 1: A learning-based synchronization policy in C deter-
mines which controllers to exchange state within each period
to maintain a global network view.

Recent research works have focused on developing learning-
based algorithms to maintain consistent network state [4], [5],
[6], [7], [8]. The authors in [4], proposed an algorithm for
determining the optimal frequency of exchanging synchro-
nization messages among controllers for shortest path routing
and load balancing in SDN applications. The authors in [5]
proposed a Deep Reinforcement Learning (DRL) algorithm to
minimize communication latency and waiting time for inter-
domain routing tasks by selectively synchronizing the optimal
subset of SDN controllers. In [6], the authors introduced a
DRL-based synchronization policy for inter-domain routing
tasks. In [7], DRL and transfer learning synchronization
policies were developed for inter-domain routing and load
balancing, respectively. Finally, in [8], a joint controller syn-
chronization and placement RL algorithm was proposed and
evaluated in inter-domain routing and load balancing SDN
applications.

Despite these research efforts, we have identified several
limitations in the existing works. Firstly, most approaches are
limited to optimizing a single performance metric, failing to
address more complex and realistic objectives [4], [5], [6], [7].
Secondly, they predominantly emphasize either user-centric
[S] or network-centric metrics [6], [7] without considering
both simultaneously. Thirdly, they primarily concentrate on
a limited set of SDN applications [4], [5], [6], [7], [8], such
as shortest path routing; however, there is a critical need to
address a broader range of use cases, especially in Next-

Generation (NextG) networks, where numerous new applica-
tions are expected to emerge with stringent QoS requirements,
such as augmented and virtual reality applications. Finally,
there is a notable lack of comparison with state-of-the-art
synchronization policies, as well as comprehensive evaluations
in dynamic and multi-domain SDN networks [5], [6], [7], [8].

To address these limitations, we propose a novel synchro-
nization algorithm that can be deployed in any distributed SDN
controller to facilitate intelligent synchronization decisions,
enabling long-term network cost optimization while meeting
the strict latency requirements of all tasks and maintaining
satisfactory user performance. We compare our D2Q Syn-
chronizer with heuristic and learning-based state-of-the-art
synchronizers in various dynamic and multi-domain SDN
networks. In all scenarios, it outperformed heuristic policies
by at least 45% and intelligent synchronizers by at least
10% in minimizing network costs. Finally, in addition to
cost minimization, our synchronizer increased both the total
number of latency-compliant paths and the number of correct
server allocations for task offloading compared to the other
synchronizers.

II. MOTIVATION AND SYSTEM DESCRIPTION

In this study, our primary objective is to develop an intel-
ligent synchronization policy with a limited synchronization
rate, aiming to minimize the number of control plane state
exchanges while maintaining satisfactory user and network
performance. The policy will assist the controller in approx-
imating the long-term global network state as closely as
possible to the ground-truth state by carefully selecting which
controllers to synchronize at each decision step. The develop-
ment of this algorithm is driven by two primary reasons.

First, we aim to minimize the number of control plane
messages exchanged between the controllers, because they
carry large amounts of data [1], [2]. Although the user plane
generates most of the network traffic [1], reducing unnecessary
control plane messages is crucial, particularly in multi-domain
NextG SDN networks. For instance, in a network with N
SDN controllers that are connected with a mesh topology,
the number of synchronization messages grows at a rate of
O(N?), making fully consistent algorithms difficult to scale
in large networks. In addition to this, each network state
update requires transmitting substantial data within a short
time period, which necessitates a large pool of communication
and computation resources [1], [2].

The second motivation arises from the extensive deployment
of wireless SDN controllers in NextG networks, spanning
from the radio access network to the core network [15], [16].
Many of these sections include wireless segments, meaning
SDN controllers must manage domains that rely on wireless
channels. These wireless channels, which either connect the
controllers or the control with the data plane, are vulnerable
to disruptions caused by factors such as poor signal quality,
the mobility of SDN controllers, or adversarial actions like
jamming attacks. Therefore, implementing a policy that limits
synchronization among controllers can help sustain robust user

and network performance, even in uncertain and dynamic
network environments.

A. Distributed SDN Environment

Our study focuses on a distributed SDN environment, where
SDN controllers (C) and data plane devices (D) are inter-
connected through wireless links. Each network domain in-
cludes SDN-enabled data plane devices, such as programmable
switches and routers, as well as edge servers for task of-
floading and processing. These domains are interconnected
through gateway nodes with inter-domain links. Distributed
SDN controllers have an up-to-date view of their own domains
by continuously monitoring intra- and inter-domain link and
node-level statistics, including link latency, throughput, and
computing resource utilization. The network domains are
highly heterogeneous and dynamic, with varying numbers of
routing and computation devices to meet user traffic demands.
The available capacity of intra- and inter-domain links is
constantly evolving due to the background traffic in each
domain, as well as the available computing resources in
edge servers. In this study, we assume that each edge server
e € F, from a set of servers F, is assigned a dynamic cost
variable denoted as c., which represents the processing cost
of completing a task on that server. Finally, we assume that
the queue waiting time is uniform across all routing devices.

B. Application of Interest

In this work, we focus on strategically offloading tasks to the
most cost-efficient servers while ensuring that these tasks meet
their latency deadlines. More specifically, within the domain
(controller) where the synchronization policy is deployed,
user-generated tasks are collected and forwarded from the data
plane devices to the domain’s SDN controller, which selects
the optimal paths and the appropriate edge servers for task
offloading. In this setup, the objective of the SDN controller
is twofold: first, to calculate end-to-end paths that may span
multiple network domains and satisfy the latency requirements
of user tasks; and second, to select servers that minimize total
network costs. While this task may seem straightforward, it
presents significant challenges due to limited synchronization.
The SDN controller lacks a global view of the entire network
and can only receive network state information from a subset
of neighboring SDN controllers. This means that, the correct
calculation of paths and server selections is highly dependent
on the synchronization rate, due to the dynamic nature of each
network domain’s topology, as well as the varying link capaci-
ties and server costs. For instance, higher synchronization rates
will assist the controller to calculate more accurate paths and
select optimal servers, but at the expense of increased control
plane communication. Conversely, lower synchronization rates
result in less accurate calculations. Therefore, a policy that
autonomously and intelligently selects the optimal subset of
SDN controllers is needed to balance communication costs
with network and user performance.

C. Problem Description

Before describing the problem, we define the unit that
quantifies the synchronizable domain information and the
synchronization budget.

Definition 1. A synchronization control message (SCM)
encapsulates the intra-domain topology, intra- and gateway
link delays, and edge server costs. It reflects the synchronizable
domain information that needs to be exchanged between
domain controllers.

Definition 2. The maximum number of SCMs that can be
exchanged between SDN controllers in a time period T is
defined as the synchronization budget (SB).

Another key aspect to address is the method by which
the SDN controller determines the optimal network path and
selects an appropriate server for each task.

Server Selection: The server selection for the SDN controller
is straightforward, it selects the server with the minimum cost
(based on its global network state) across the entire network:

e* = argminc, (1)
ecll

Path Calculation: Paths are computed using Dijkstra’s al-
gorithm, where the weights of the network correspond to
the transmission latency across both intra-domain and inter-
domain links. Therefore, to determine the optimal path (in
terms of latency) p; , € P from a set of candidate paths P,
starting from an initial node k and ending at an edge server
e € F, the SDN controller uses the following formula:

Pk.e = argmind(p) 2)
peEP

where d(p) denotes the total transmission latency due to the
intra and inter-domain link latencies from the selected path p.
Consider a distributed network architecture as illustrated
in Figure 1, with N SDN controllers. Let’s assume that the
synchronization policy is deployed in C; controller, and the
controller can communicate with only SB controllers during
each time period 7. During this time period, tasks, denoted as
J, are generated by the users or sampled from the queues of
the previous time step 7 — 1. Each task j € J has a predefined
latency requirement denoted as ;. The C; controller, based
on its current network state, selects the optimal set of edge
Servers E* C E, that satisfy the latency constraints for all

tasks J, as shown in Eq. (3) and (4).

J
E, = mbinz Ce; 3)
j=1
subject to: d(p) <1l;, VjeJ “4)

Due to limited synchronization, however, the controller may
not always select the globally optimal set of edge servers
E, C E. Thus, the policy must strategically guide the C;
controller to synchronize with only a subset of SDN controllers

(constrained by SB) that will yield long-term cost minimiza-
tion benefits. In a sense, the policy should autonomously un-
derstand which domains are more dynamic at every time step
(in terms of topology, link latencies, and server cost variations,
as all of these variables are dynamic) and, based on these
insights, to synchronize the appropriate SDN controllers. To
approximate the optimal synchronization policy, we leverage
the power of RL algorithms, which are well-suited for solving
such complex sequential decision-making problems.

D. MDP Formulation

We formulate our controller synchronization problem as a
MDP [10] where:

e S is our finite state space, represented by a one-
dimensional vector s € R¥, and denotes the number
of time periods elapsed since the last synchronization of
each SDN controller. This representation enables us to
monitor the frequency of updates from the controllers,
providing insights into the synchronization policy.

o« A is our finite action space, represented by a one-
dimensional vector a € {0,1}"V, where each element a;
corresponds to the decision made for the i-th controller.
Specifically, a; = 1 indicates that the i-th controller’s
SCM is to be exchanged during the current time step,
while a; = 0 shows that the i-th controller’s SCM will
not be exchanged.

e Our reward function R(s,a) reinforce the selection of
SDN controllers that will help to minimize the long-
term network costs as described in Equation (3). If
the selected controllers are suboptimal in terms of cost
minimization or violate the latency requirements of tasks,
the reward function should return a penalty that guides the
agent to avoid these actions. For instance, a sub-optimal
selection of controllers for synchronization that increases
the number of tasks with latency violations should be
penalized with a negative reward. Conversely, if the se-
lected controllers reduce task latency violations but result
in more sub-optimal task allocations to edge servers, the
agent should receive a smaller negative reward compared
to the first case. Therefore, our reward function is defined
as follows:

R(s,a) = > U(j,p(é),e") %)

j=1
0, if d(p(é)) <,
and é = e*
U(j,p(é),€") = § =Alce = ces|, if d(p(é)) <1; (6)
and é # e*
-7y, otherwise

where A and r; are positive scalars, while e* and é
represent the optimal cost-efficient server and the selected
server for each task j, respectively. The values of A and
r1 were set to 80 and 10000 respectively.

III. D2Q SYNCHRONIZER

In this section, we provide the details of our D2Q Synchro-
nizer, our RL agent, which was utilized to solve the MDP
defined previously. In general, in RL, an agent sequentially
interacts with an environment, taking actions and receiving
feedback in the form of rewards or penalties. The agent’s
objective is to learn a policy that maximizes the cumulative re-
ward over time. In our case, the goal of the D2Q Synchronizer
is to find a sequence of actions within a finite discrete horizon
T such that the long-term accumulated reward is maximized.
This will enable the SDN controller to correctly offload tasks
to latency-compliant paths, minimizing the network operator’s
costs. While tabular - RL approaches can be very successful
for small state-action spaces, in our problem the state-action
space is extremely large. The state space grows as TV, while
the action space grows as (SAJB). To overcome this issue, we
employ DRL techniques that can handle large state-action
spaces, such as playing Atari games [11], and more specifically
we use Double Deep-Q Networks (DDQN) [12] as the core
for our agent.

D2Q Synchronizer Architecture: The input to our D2Q
Synchronizer consists of the synchronization state of all con-
trollers, while the output is the selected subset of controllers
for synchronization (constrained by SB). To accurately map
and select the optimal action a in each state s, we employ
two Deep Neural Networks (DNNs): a main network for
generating action selections and a target network for providing
stable target values during training. Each network includes two
hidden layers, each containing 64 neurons, followed by ReLU
activation functions except the last output layer.

Training the D2Q Synchronizer: To train our synchronizer,
we first created a range of simulated network environments
with varying numbers of domains, data plane devices, ser-
vice requests, and synchronization budgets, as detailed in
Section IV.B. For each environment, we trained our agent
and monitored its performance in minimizing accumulated
network costs while ensuring that latency requirements for
user requests were met. Both the training and exploitation
phases of the agent occurred within the same evolving network
over time. For balancing the training-exploitation phase we
utilized an e-greedy policy. Finally, to enhance the stability
and convergence of our agent, we employed a pruned version
of the DNNs during training, utilizing dropout regularization
and an experience replay buffer (I) of size 40,000 for storing
the agent’s experiences. Also, the batch size (B) was set to 256
experiences, where each batch was sampled randomly from the
buffer at each time step to break the correlation of consecutive
episodes. Further details of the training process are outlined
in Algorithm 1.

IV. EVALUATION

A. Synchronizers

To evaluate the performance of our D2Q Synchronizer, we
implemented two well-known policies: the Random policy and
the Round Robin policy, as implemented by the authors in [7]

Algorithm 1 Training D2Q Synchronizer

Input: randomized parameters 6, 6’ for initializing the main
and target DNN, learning rate «, batch size B, epsilon decay
rate €, soft update rate for target network «, time horizon T’
Output: learned parameters ¢ for DNN

1: Initialize: Main DNN with random parameters # and target
DNN with parameters 6’ = 6
2: Initialize: Experience Replay Buffer I for (s,a,r, ¢) tu-
ples to be stored for episodes £ =1,..., M
3: for E=1,...,M do
4 Set: Exploration probability p, = %E/e
5: Set: Initial state sy to zero vector
6 while ¢t < T do
7 Select action a; using the epsilon-greedy policy:
with probability p., select a random action;
otherwise, select a(t) = arg max, Q(s(t), a;)

8: Obtain the rewards r; from the
simulated network environment using equation (6)
9: Transition to the next observation ¢(t) = s(t + 1)
10: Store (s(t),a(t),r(t),(t)) in I
11: Sample a random mini-batch of size B from I,
each entry denoted by (s;,a;,75,¢;),7=1,...,B
12: for j=1,...,B do
13: aj = argmaxa Q(s;, A; 0)
14: yj =r; +7Q(¢;, a;;6")
15: Perform gradient descent step on
(y; — Q(s4,a;;6))* with respect to 6, to obtain
VoL(0)
16: end for
17: 0+ 60— aVyL(h)
18: 0 +— kO + (1 — k)&
19: end while
20: end for

and [8]. Additionally, we implemented an intelligent RL-based
synchronizer leveraging the Proximal Policy Optimization
(PPO) algorithm [13], referred to as the PPO Synchronizer.
Finally, we compare our synchronizer with the state-of-the-art
DQ-Scheduler [6], that was fine-tuned for our task. Note that
these algorithms do not create a fully consistent network state,
enabling a fair comparison with our D2Q Synchronizer.
Random Synchronizer: A controller synchronization policy
that randomly synchronizes a subset of controllers |S B| during
each time period 7.

Round Robin Synchronizer: A controller synchronization
policy that sequentially synchronizes subsets of SDN con-
trollers at each time period 7.

PPO Synchronizer: An RL-based synchronization policy
that leverages the PPO algorithm to intelligently synchronize
SDN controllers. This method intelligently selects the SDN
controllers with the highest priority for synchronization. In our
implementation, the discount factor v was set 0.01, encour-
aging a more greedy synchronization strategy that prioritizes
immediate over long-term rewards.

DQ Scheduler: An RL-based scheduler originally designed

©
S
3
3

@
3
3
3

520001

Random Synchronizer /“""‘“"‘"‘
Round Robin Synchronizer .~

Deep-Q Scheduler

—— PPO Synchronizer

51000+

50000 1
= D2Q Synchronizer

11504 — Random Synchronizer
Round Robin Synchronizer
Deep-Q Scheduler W

—— PPO Synchronizer

1100

490001

S
3
8

compliant paths

48000 1
—— Random Synchronizer >
Round Robin Synchrenizer
Deep-Q Scheduler
—— PPO Synchronizer

= D2Q Synchronizer

~
b
S
3
S

Accumulated network costs
3
8
8

Latency

e A 46000 ¢
\...._..... 45000

5000

B T

— D2Q Synchronizer
1050

1000

Successful server allocations
&
2

10 40 50 0 10

20 30
Episodes

(a) Reduction in network costs.

20 30
Episodes 10 20 30 40 5

(b) Increase in latency-compliant paths.

-

40 5 900

(c) Increase in correct server allocations.

Fig. 2: Comparison of accumulated costs, latency-compliant paths, and server allocations across all synchronization algorithms.

for interdomain routing tasks [6], which was fine-tuned for our
synchronization application by modifying its reward function
to align with our objectives. The core implementation of this
policy is based on Deep-Q Networks. More details regarding
the architecture of the RL-based synchronizers and the hyper-
parameters used are provided in Section IV.C.

B. Network Settings

1) Network Topology of the Simulated SDN Network: For
our evaluations, network topologies within each domain,
as well as the inter-domain connections, were generated
using the Erd6s—Rényi model [9]. Intra-domain links
were subject to potential failures, with a probability of
p= % during each time period 7. The algorithms were
evaluated across various SDN networks, one network
each time for training and inference, with the number
of domains (V) ranging from 5 to 12, and each domain
containing between 2 and 15 data plane devices D.
Edge computational resources were distributed in each
domain, with 4 servers and each assigned a randomly
assigned cost (¢) ranging from 20 to 100 each time
period 7. Finally, the synchronization budget (SB) was
set between 2 and 8, for each network.

2) Task Generation: In each data plane device, user tasks
are generated according to a Poisson distribution with a
rate parameter (\) ranging from 2 to 5, each with varying
latency requirements. We evaluated two scenarios: tasks
with stringent low latency requirements, categorized as
low latency (10 ms), and tasks with more relaxed time
constraints, categorized as mid latency (100 ms) [14].

C. Synchronizers Settings

Our D2Q Synchronizer, along with the other policies,
was fine-tuned through extensive hyperparameter optimization
(Grid Search). A fair comparison across all the synchronizers
was ensured by maintaining a uniform architecture consisting
of two hidden layers with 64 neurons each, utilizing ReL.U as
activation function. For all the policies, we used a batch size
(B) of 256, a learning rate («)) of 0.01, a time horizon (T)
of 500, an epsilon decay rate (¢) of 25 and Adam optimizer.
Finally, the discount factor () was set to 0.9 for all models,
except for the PPO synchronizer, which was set to 0.01.

D. Evaluation Results

The evaluation results of the D2Q Synchronizer for one
scenario with NV = 7 domains and SB = 3 are presented in
Fig.2, where Figs. 2a-2c show the performance in terms of the
objective stated in Section II-C. Fig. 3 shows the performance
of the D2Q Synchronizer across different networks, with a
varying number of domains, synchronization budgets, and
tasks with different latency requirements.

1) Superiority of D2Q Synchronizer in minimizing costs:

The evaluation results in Fig.2a confirm the superiority of
the D2Q synchronizer in achieving long-term minimization of
network costs. In particular, during the evaluation period of
the last 25 episodes, where each episode lasted for 7" = 1000
time periods, the D2Q Synchronizer outperformed the Random
Synchronizer by 44.52%; the Round Robin Synchronizer by
47.34%; the PPO Synchronizer by 32.76%; and the DQ
Scheduler by 10.65% in minimizing network costs.

2) Superiority of D2Q Synchronizer in secondary objectives:

Despite our first objective being to minimize network costs
by offloading user tasks to the most cost-efficient servers,
the way we defined our reward function in Eq. (6) and (7)
helped in maximizing the total number of latency-compliant
paths as well as the number of optimal allocations to the
most cost-efficient servers. In particular, the D2Q Synchro-
nizer outperformed the Random Synchronizer by 14.07%; the
Round Robin Synchronizer by 15.5%; the PPO Synchronizer
by 6.23%; and the DQ Scheduler by 0.71% in maximizing
compliant paths, as illustrated in Fig. 2b. In addition, the
D2Q Synchronizer surpassed the Random Synchronizer by
24.57%; the Round Robin Synchronizer by 25.79%; the PPO
Synchronizer by 12.18%; and the DQ Scheduler by 2.68% in
maximizing optimal server allocations for offloading tasks, as
illustrated in Fig. 2c.

3) Superiority of D2Q Synchronizer in various SDN networks
and task deadlines: We evaluated the D2Q Synchronizer across
different SDN networks and latency requirements of tasks as
described in Section IV.B, and in all these different settings,
it outperformed all the baselines as illustrated in Fig. 3.
Some interesting insights are that, first, higher values of SB
for a fixed value of N will result in further improvements
of the accumulated costs and the secondary objectives due

Accumulated Costs

15000 4

12500

10000 1

7500

5000

W Random Synchronizer (low latency)
mmm Random Synchronizer (mid latency)
=3 Round Robin Synchronizer (low latency)
[Z=3 Round Robin Synchronizer (mid latency)
BN DO Scheduler (low latency)

A DO Scheduler (mid latency)

B D20 Synchronizer (low latency)

BEm D2Q Synchronizer (mid latency)

B FPO Synchronizer {low latency)

mEm FPO Synchronizer {mid latency)

2500

N: 6 SB: 3 N: 7 SB: 2

N:7SB: 3

N: 8 SB: 2 N: 8 SB: 3 N: 8 SB: 4

60000

50000

40000

30000

20000 1

Latency-Compliant Paths

10000

N:6SB: 3 N:7SB: 2

N:75SB:3

N: 8 SB: 2 N: 8 SB: 3 N: 8 SB: 4

1500 4

1000

500

Successful Server Allocations

N: 6 SB: 2 N: 6SB: 3 N: 7SB: 2

N:75B:3

i
!
!
/
/
!
/

N:7SB: 4 N: 8 SB: 2 N: 8 SB: 3

Fig. 3: Comparison of accumulated costs, latency-compliant paths, and server allocations across all synchronization algorithms

under various SDN networks and latency requirements.

to higher control plane communication. Secondly, less strict
latency requirements of the tasks will have a greater impact on
cost minimization as more latency-compliant paths and server
allocations can be calculated correctly. Therefore, based on
these observations, a network operator can fine-tune the SB
to balance control plane overhead with cost minimization.

V. CONCLUSION

In this paper, we studied the controller synchronization
problem in distributed SDN for finding the optimal synchro-
nization policy to minimize long-term network costs while
jointly satisfying the QoS of user tasks. We proposed a
new RL-based policy called the D2Q synchronizer to solve
the formulated MDP. Evaluation results demonstrated that
our policy offers improved user and network performance
compared with heuristics and state-of-the-art synchronizers.

REFERENCES

[1] Kreutz, D., Ramos, F. M. V., Verissimo, P. E., Rothenberg, C. E.,
Azodolmolky, S., and Uhlig, S., “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76,
2015.

[2] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN control:
Survey, taxonomy, and challenges,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 1, pp. 333-354, 2018

[3] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker, “CAP for
networks,” in ACM HotSDN, 2013.

[4] Poularakis, K., Qin, Q., Ma, L., Kompella, S., Leung, K. K., and
Tassiulas, L., “Learning the optimal synchronization rates in distributed
sdn control architectures,” in IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications, 2019, pp. 1099-1107.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

Zhang, Z., Ma, L., Poularakis, K., Leung, K. K., Tucker, J., and Swami,
A., “Macs: Deep reinforcement learning based sdn controller synchro-
nization policy design,” in 2019 IEEE 27th International Conference on
Network Protocols (ICNP), 2019, pp. 1-11

Zhang, Z., Ma, L., Poularakis, K., Leung, K. K., and Wu, L., “Dq
scheduler: Deep reinforcement learning based controller synchronization
in distributed sdn,” in ICC 2019 - 2019 IEEE International Conference
on Communications (ICC), 2019, pp. 1-7

Mudvari, A., Poularakis, K., and Tassiulas, L., “Robust sdn synchroniza-
tion in mobile networks using deep reinforcement and transfer learning,”
in ICC 2023 - IEEE International Conference on Communications, 2023,
pp- 1080-1085.

Mudvari, and Tassiulas, L., ”Joint SDN Synchronization and Controller
Placement in Wireless Networks using Deep Reinforcement Learning,”
IEEE/IFIP Network Operations and Management Symposium (NOMS),
2024

P. Erd6s and A. Rényi, ”On Random Graphs I,” Publicationes Mathe-
maticae, vol. 6, pp. 290-297, 1959.

White, C., Markov decision processes. Springer, 2001

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., and Riedmiller, M., “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

van Hasselt, H., Guez, A., and Silver, D., “Deep reinforcement learning
with double g-learning,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 30, no. 1, 2016.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov,
O., “Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017

European Telecommunications Standards Institute, "ETSI TS 122 261
V16.14.0: 5G; Service requirements for the 5G system (3GPP TS 22.261
version 16.14.0 Release 16),” ETSI, Apr. 2021.

A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines, ”’5G network
slicing using SDN and NFV: A survey of taxonomy, architectures and
future challenges,” Comput. Netw., vol. 167, p. 106984, 2020.

X. Foukas, G. Patounas, A. Elmokashfi, and M. Marina, “Network
Slicing in 5G: Survey and Challenges,” IEEE Commun. Mag., vol. 55,
no. 5, pp. 94-100, 2017.

