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Abstract—In distributed Software-Defined Networking (SDN),
multiple physical SDN controllers are deployed to achieve cen-
tralized view and control of the entire network by synchronizing
with each other. Despite the availability of various synchro-
nization policies for distributed SDN controller architectures,
most current research works do not consider joint optimization
of network and user performance. In this paper, we explore
learning-based synchronization policies designed to minimize net-
work operational costs by strategically offloading time-sensitive
tasks to proximate edge servers while ensuring that the latency
requirements are met. We formulate the controller synchro-
nization problem as a Markov Decision Process (MDP) and
employ Reinforcement Learning (RL) techniques to enhance both
user satisfaction and network profitability. Evaluation results in
various simulated SDN environments demonstrate that value-
based RL approaches increase the total number of latency-
compliant paths by 15.18% while simultaneously reducing oper-
ation costs by 22.95%, compared to policy-based RL approaches
and heuristics.

Index Terms—Software-Defined Networking (SDN), Reinforce-
ment Learning (RL)

I. INTRODUCTION

Software-Defined Networking (SDN) introduces a ground-
breaking shift in network architecture, fundamentally differen-
tiating the decision-making entity, known as the control plane,
from the physical elements that handle user data, referred to as
the data plane [1]. SDN applications can be implemented and
deployed in the application plane, where northbound interfaces
connect the control with the application plane, and southbound
interfaces connect the control with the data plane. This sepa-
ration enhances network performance through programmable
management and reconfiguration, offering network operators
increased flexibility and adaptability. In this centralized archi-
tecture, all the network control functionalities are implemented
in an SDN controller, which possesses the entire network state.
While centralized approaches offer significant benefits, they
encounter challenges related to scalability, availability, and se-
curity. As network infrastructures become more complex, cen-
tralized controllers face limitations in computational capacity
and lack scalability. Additionally, concentrating control plane
functions in a single node introduces security vulnerabilities,
potentially compromising network resilience and reliability.
To overcome these issues, a distributed SDN approach, with
multiple hierarchical and independent controllers managing
specific network domains, has been proposed in the literature
[2]. These controllers, though physically separated, operate in
a ’logically-centralized’ manner by periodically exchanging

domain network states for global decision-making, a procedure
known as controller synchronization. In large-scale networks,
complete synchronization among controllers is often cost-
prohibitive due to high communication demands, leading many
distributed SDN networks to adopt partial synchronization
and accept temporary inconsistencies in controllers’ network
views, which is known as the eventual consistency model [3].

Utilizing this model, several research works have been
proposed to optimize various SDN applications by approximat-
ing the synchronization policy using Reinforcement Learning
(RL) techniques. In [4], the authors presented a systematic
methodology for deciding the optimal frequency of exchanging
synchronization messages among controllers for shortest path
routing and load balancing SDN applications. The authors
in [5], proposed a Deep Reinforcement Learning (DRL) al-
gorithm to minimize the communication latency and waiting
time of inter-domain routing tasks by selectively synchronizing
the optimal subset of SDN controllers. In this work [6], the
authors introduced a DRL-based synchronization policy for
inter-domain routing tasks. In [7], DRL and transfer learning
synchronization policies were developed for inter-domain rout-
ing and load balancing, respectively. In this study [8], a joint
controller synchronization and placement RL algorithm was
proposed and tested in inter-domain routing and load balancing
SDN applications.

Despite extensive efforts to optimize individual network
metrics, there is a conspicuous lack of proposals addressing
controller synchronization designs specifically tailored to time-
sensitive applications, such as Augmented Reality (AR) and
Virtual Reality (VR) technologies, which demand low latency
and high computational resources to ensure smooth and im-
mersive experiences to the end users. Such designs should
jointly optimize SDN application performance and network
efficiency, providing simultaneous benefits to both users and
network operators. To fill this gap, we have developed an
SDN application called ”AR/VR Optimization” to minimize
network operator costs by strategically offloading user tasks
to the most cost-effective servers while ensuring that the
predefined latency requirements are met. We formulate this
optimization problem as a Markov Decision Process (MDP)
and utilize RL techniques to approximate the optimal syn-
chronization policy. Evaluation results demonstrate that value-
based approaches outperform both policy-based methods and
heuristics, increasing the number of latency-compliant paths
by 15.18% and reducing network operator costs by 22.95%.



II. SYSTEM DESCRIPTION
A. Distributed SDN Environment

The network architecture comprises distributed SDN con-
trollers (C) and data plane devices (D). Each network do-
main includes SDN-enabled data plane devices, such as pro-
grammable switches and routers, alongside edge servers for
task offloading and real-time AR/VR application processing.
These domains are interconnected through gateway nodes with
inter-domain links. Distributed SDN controllers manage and
control their own domain, maintaining a comprehensive and
up-to-date view by continuously monitoring intra- and inter-
domain link and node-level statistics, including link latency,
throughput, and computing resource utilization. The network
domains are highly heterogeneous and dynamic, as each can
contain a different number of routing and computation devices
to cover the varying user traffic demands. The available
capacity of intra- and inter-domain links is constantly evolving
due to the background traffic in each domain, as well as
the available computing resources in edge servers. Finally,
we assume that each edge server is assigned a dynamic cost
variable, representing the processing cost for completing a
task. This cost variable can alternatively be interpreted as the
amount of energy the server will spend to fulfill the computing
requirements of the task. In this work, we assume that the
queuing waiting time in the SDN-enabled switches and the
server processing time for each task are constant across all
switches and servers respectively.
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Fig. 1. A network environment with multiple distributed SDN controllers. The
synchronization policy is deployed in C; controller, and guides C7, which
controllers to synchronize at each period to maintain a global network view,
for optimizing the network performance metric.

B. Application of Interest

In this work, we focus on an SDN application which lever-
ages both intra- and inter-domain network state information.
Due to limited synchronization, each controller possesses only
a partial view of the entire network. Considering this con-
straint, the objective of this SDN application is to strategically

offload user tasks to the most cost-effective servers while
ensuring that latency constraints are satisfied. This SDN appli-
cation is particularly suitable for latency-sensitive applications
such as AR/VR, due to the stringent latency requirements, and
it also offers significant benefits for network operators aiming
to minimize operational costs. Henceforth, we will refer to this
application as the ”AR/VR Optimization” SDN application.

C. Performance Metric

User tasks associated with AR/VR applications, character-
ized by diverse latency requirements, are aggregated within
each domain and subsequently forwarded to the respective
domain-specific SDN controller. These tasks are then pro-
cessed and queued by the SDN controller. Leveraging its
network view, the SDN controller calculates latency-compliant
end-to-end paths to edge servers for task offloading and
execution, potentially spanning multiple domains. From these
latency-compliant paths, the controller selects the edge server
that minimizes task processing costs. The selection of the opti-
mal path-server pair is a dynamic decision and depends on the
network state within each domain, the overall logical network
view maintained by the domain SDN controller, as well as
the network operator’s objectives. For example, the network
operator may prioritize selecting cost-effective servers, even if
it requires sacrificing latency for a short time. In this work,
we aim to minimize the overall network cost by reinforcing
the SDN controller to get synchronized by the most important
neighboring SDN controllers for maintaining as close to an up-
to-date network view as possible. By maintaining this network
view, the controller can most of the time select the most cost-
efficient edge servers for multiple tasks, while ensuring that
the latency constraints are satisfied.

D. Controller Synchronization Problem

The main questions we aim to answer in this work are the
following: What synchronization policy should we implement
for the distributed controllers, based on the "AR/VR Optimiza-
tion” SDN application, to optimize our network performance
metric over a long-term period? Additionally, how frequently
should the controllers be synchronized to achieve satisfactory
long-term performance? These questions are challenging to
address with conventional optimization algorithms due to the
unpredictable timing of user request arrivals, the stochastic
nature of the network state, and the limited inter-domain
state information exchanged between controllers. Therefore,
in this work, we apply model-free RL approaches to develop
a robust synchronization policy that adaptively manages the
synchronization frequency of distributed SDN controllers and
selects the optimal subset of controllers to synchronize during
each time period, thereby optimizing the defined performance
metrics. Finally, we assume that the synchronization policy is
deployed in one of the SDN controllers, as proposed by the au-
thors in [5]. This controller is tasked with two main functions:
(1) formulating synchronization policies, and (2) aggregating
domain network states from the derived synchronization policy
to update its global network view.



III. PROBLEM FORMULATION

In this distributed SDN environment, our goal is to develop
an intelligent synchronization policy that will be deployed in
one of the distributed SDN controllers for maintaining an up-
to-date global network view and thus achieving long term
optimization of the described performance metric. Figure 1
illustrates a distributed SDN architecture, in which the syn-
chronization policy is deployed in one of the controllers (C1).
This controller, based on the output of the synchronization
policy, receives domain state information from a limited num-
ber of neighboring controllers and updates its network view.
Before delving into the mathematical formulation, we define
the unit that quantizes the synchronizable domain information
and the synchronization budget.

Definition 1. A synchronization control message (SCM)
encapsulates the intra-domain topology, intra- and gateway
link delays, and edge server costs. It reflects the synchronizable
domain information that needs to be exchanged between
domain controllers.

Definition 2. The maximum number of SCMs that can be
exchanged between SDN controllers in a time period is defined
as the synchronization budget (SB).

Mathematical Formulation

Consider a network scenario as depicted in Figure 1, where
multiple distributed controllers manage N network domains.
The synchronization policy is deployed in the C; controller,
where all user tasks K are stored in its queue. The number of
domains from which the C; controller can receive network
state updates for reconstructing its global network view is
constrained by its synchronization budget |SB|. For each task,
the C; controller computes an end-to-end path p from a set of
available paths P and selects an edge server e from a set of
available edge servers E. Each selected path p € P comprises
[ intra-domain and r inter-domain links, while each selected
edge server incurs a cost ¢, for processing the task. Let x;(p)
and z;(p) denote the delays for the i-th intra-domain and j-
th inter-domain links on path p, respectively. Additionally, all
the user tasks have a predefined latency requirement denoted
as L. The objective of the SDN controller is to minimize the
total network costs by strategically offloading user tasks to
a set of optimal edge servers V* C E while satisfying the
latency constraints based on its inconsistent network view. This
optimization problem can be formulated as follows:

K
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The optimal set V* of edge servers depends on the num-
ber of SCMs that are exchanged between the distributed
controllers. Therefore, the SDN controller C; needs to be
constantly updated by receiving the most important informa-

tion from only a subset of neighboring domains to minimize

the overall network cost. The decision-making process for
selecting the optimal paths and set of edge servers becomes
even more complex when considering additional factors such
as the parallel execution of numerous tasks across various
SDN controllers, the limited SB, and the network operator
objectives. Given these complexities, conventional optimiza-
tion techniques may prove inadequate for achieving real-time,
efficient solutions. Consequently, we explore the application of
various RL algorithms to dynamically and intelligently adapt
to these rapidly evolving conditions.

A. MDP Formulation

We formulate our controller synchronization problem as
a MDP [11] with the three tuple (S, A, R) considering N
distributed SDN controllers as follows:

« S is a finite state space, represented by a one-dimensional
vector s € RY, and denotes the number of time periods
elapsed since the last synchronization of each SDN
controller. This representation enables us to monitor the
frequency of updates from the controllers, providing
insights into the synchronization policy and the network’s
dynamics.

e A is a finite action space, represented by a one-
dimensional vector a € {0,1}", where each element a;
corresponds to the decision made for the i-th controller.
Specifically, a; = 1 indicates that the i-th controller’s
SCM is to be exchanged during the current time step,
while a; = 0 shows that the i-th controller’s SCM will
not be exchanged.

e R denotes the immediate reward function for state-action
pairs, expressed as R(s,a). In our defined SDN appli-
cation, the reward function R(s,a) evaluates the action
a taken at state s and it yields a positive reward when
actions jointly satisfy both latency and cost constraints.
Otherwise, a negative reward is imposed if either criterion
is not met individually. Intuitively, our reward function
provides valuable feedback to the agent for synchronizing
the subset of SDN controllers with the most long-term
influence on network performance.

B. Reinforcement Learning Formulation

In RL, an agent sequentially interacts with an environment,
making decisions, and receiving feedback in the form of
rewards or penalties. The agent’s objective is to develop a
policy for selecting actions based on its current state, to
maximize the cumulative reward over time. The long-term
reward is defined as the discounted sum of the expected
immediate rewards of all future state-action pairs from the
current state. This learning process is dynamic and adaptive,
with the agent continually refining its policy based on ongoing
interactions and feedback from the environment. The primary
goal of applying RL to our problem is to approximate the
optimal synchronization policy, by synchronizing the most
important SDN controllers to maximize the long term reward.
Therefore, starting from an initial state sq, the goal is to find



a sequence of actions within a finite horizon so that the long-
term accumulated reward is maximized and thus the SDN
controller will correctly offload tasks to latency compliant
paths that will minimize the network operator costs. In this
work, we considered both value-based and policy-based RL
approaches, to address the challenges in our synchronization
problem. Due to the limited space, we will only provide the
high level ideas of these approaches. For readers interested in
more detailed information on the implemented RL approaches
and their training algorithms, further details can be found here
[12] - [16].
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Fig. 2. The graph highlights the effectiveness and convergence behavior of
each algorithm in minimizing network costs.
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Fig. 3. The graph highlights the effectiveness and convergence behavior of
each algorithm in maximizing the number of latency-compliant paths.
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Fig. 4. The graph highlights the effectiveness and convergence behavior of
each algorithm in maximizing the number of optimal server allocations for
task offloading.

In value-based RL approaches, the primary objective is to
estimate the value function V (s), from which the policy is then
calculated by selecting the optimal action at each state, while

in policy-based RL approaches, the strategy is to approximate
the stochastic policy directly instead of deriving a deterministic
policy from an estimated value function. We focused on
a selection of the state of the art value-based algorithms,
specifically Deep Q-Networks (DQN) [12] and Double Deep
Q-Networks (DDQN) [13]. Additionally, we explored various
policy-based methods, including the REINFORCE algorithm
[14] and the state of the art Proximal Policy Optimization
(PPO) algorithm [15]. While we also considered A2C-A3C
[16], a hybrid approach combining aspects of both value
and policy-based methods, it was excluded from our in-depth
analysis due to its similar performance as the REINFORCE.

Value Based Methods

For the value based approaches, we utilized a Deep Neural
Network (DNN) as a function approximator to estimate the
Q-function. The input to the DNN is the current state s of
the distributed SDN environment, while the output represents
the total number of possible actions for synchronizing the
SDN controllers. The number of controllers to synchronize
is constrained by the synchronization budget. For training, we
employed a replay memory to store the agent’s transitions and
used Mean Squared Error (MSE) as the loss function, suitable
for this regression problem. An epsilon-greedy strategy was
implemented to balance exploration—choosing random con-
trollers for synchronization—and exploitation—selecting the
best-known controller synchronization action. Upon complet-
ing training, a greedy approach was adopted to select the
optimal subset of controllers for synchronization at each time
period.

Policy Based Methods

For the policy based approaches, we utilized a DNN as a
function approximator to estimate directly the synchronization
policy. The input to the DNN is the current state s of the
distributed SDN environment, while the output represents the
probability distribution over possible pairs of controllers to
synchronize. Each implemented policy method has a different
training approach that is covered in [14], [15]. Upon complet-
ing training, the synchronization policy is derived by sampling
from the output distribution at each state s. Actions with higher
probability will be sampled more frequently, ensuring that the
most likely actions according to the learned policy are selected
at each state.

IV. EVALUATION
A. Performance Benchmarking

For evaluating the performance of our proposed SDN appli-
cation, we implemented two heuristic policies along with the
pre-described RL policies:

Random Policy: A simple controller synchronization policy
that aims to randomly synchronize a subset of controllers at
each time period. Specifically, with the given synchronization
budget SB during a time period, only |SB| SCMs can be
exchanged between SDN controllers. Note that this policy
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Fig. 5. Performance comparison of value-based (DQN, DDQN) and policy-based (REINFORCE, PPO) algorithms against baseline strategies (Random, Round
Robin) for network configurations with varying numbers of domains (N) and synchronization budgets (SB). The upper graph shows the accumulated network
costs, while the lower graph displays the total number of latency-compliant paths for two different latency requirements (low, mid) of AR/VR tasks.

was initially implemented for synchronizing distributed ONOS
controllers [9].

Round Robin Policy: A structured controller synchronization
policy sequentially synchronizes subsets of SDN controllers
within specified time periods. Specifically, following a prede-
termined sequence, each subset of controllers is synchronized.
At each time period, only the next subset in the sequence sends
SC M s, adhering to the synchronization budget SB.

B. Network and RL Settings

The network topology of the distributed SDN environment
was simulated using the Erd6s—Rényi model [10], and we
ensured that the generated graph is fully connected. Intra-
domain links may experience failures and subsequently be
reestablished with a probability of p = 3—10 during specified
time intervals. The RL algorithms and the heuristics were
extensively tested in various simulated network environments
with different number of network domains, data plane devices,
servers, and dynamic server costs, as shown in Table L
Multiple AR/VR tasks were generated simultaneously with
different latency requirements.

TABLE I
NETWORK ENVIRONMENT SETTINGS

Parameter Value
Network Domains (N) 5to 12
Data Plane Devices per Domain 2to 15
Edge Servers per Domain (E) 3to4
Server Costs 20 to 100
Synchronization Budget (SB) 2t08

The RL policies were fine-tuned through extensive hyper-
parameter tuning, involving variations in the number of hidden
layers, the number of neurons, learning rates, and other param-
eters. The optimal hyper-parameters selected for deriving the
synchronization policy for each case are presented in Table II.
For a fair comparison of the RL policies, the same architecture
(number of layers, neurons) was used across all evaluations.

TABLE 11

RL PARAMETERS
Parameter DQN DDQN REINFORCE PPO
Hidden Layer Neurons 50 50 50 50
Activation Function ReLU ReLU ReLU ReLU
Batch Size 256 256 256 256
Epsilon Decay Factor 10 10 - -
Replay Memory Capacity 40000 40000 - -
Optimizer Adam Adam SGD Adam
Learning Rate 0.01 0.01 0.001 0.001
Discount Factor 0.1 0.1 0.1 0.1
Output Layer Linear  Linear Softmax Softmax
Training Iterations 1 1
Clip Epsilon - - - 0.1
Gradient Clipping Norm - - - 7

C. Evaluation Results

Figures 2, 3, and 4 illustrate the evaluation performance of
each implemented policy for a distributed SDN environment
with N = 10 domains and S B = 5. The analysis of Figures 2,
3, and 4 demonstrates that value-based algorithms outperform
policy-based algorithms, as well as Random and Round Robin
synchronization policies, in minimizing network operator costs
and maximizing the number of latency-compliant network
paths and optimal server allocations. Figure 2 illustrates the su-
perior efficiency and faster convergence of the DQN algorithm



in reducing network operator costs, outperforming DDQN
by 0.45%, PPO by 7.32%, Round Robin by 17.77%, REIN-
FORCE by 18.37%, and Random by 22.95%. An interesting
insight from the analysis is that the developed synchronization
policies significantly helped the SDN controller to maximize
the number of latency-compliant network paths as well as
the number of optimal server allocations for minimizing the
overall network cost. Figure 3 demonstrates that the DDQN
is the optimal algorithm for maximizing latency-compliant
network paths, with advantages of 0.19% over DQN, 4.26%
over PPO, 10.45% over Round Robin, 11.53% over REIN-
FORCE, and 15.18% over Random. Figure 4 illustrates that
the DDQN algorithm excels in identifying optimal server
allocations. Specifically, it outperforms the DQN by 0.28%,
PPO by 5.70%, Round Robin by 15.15%, REINFORCE by
16.41% and Random by 20.61%.

As the next step, we evaluated the performance of the

algorithms in various SDN environments, as detailed in Ta-
ble I. In this phase, we also considered different latency
requirements of the generated user tasks. We considered
two scenarios: tasks with stringent low latency requirements,
referred to as low latency (10 ms) [17], and tasks with less
stringent time constraints, referred to as mid latency (15 ms).
Despite the extensive scope of our analysis across various
network settings, Figure 5 selectively illustrates results for a
representative subset of network domains (N) and synchro-
nization budgets (SB). The upper graph in Figure 5 illustrates
the accumulated network costs for various configurations of
N and SB. Notably, the value-based approaches, such as
DQN and DDQN, demonstrate significantly reduced network
costs across all configurations, highlighting their efficiency
in optimizing network operational expenses. The lower graph
displays the total number of latency-compliant paths for tasks
with different latency requirements. Here, DQN and DDQN
again outperform other strategies, demonstrating a superior
ability to maintain a higher number of latency-compliant
paths. This performance is crucial for ensuring timely task
offloading in time-sensitive applications. As expected, mid
latency requirements enable all the policies to calculate more
latency-compliant network paths, as shown in the lower part
of Figure 5.
Key takeaways: Based on extensive simulations, we conclude
that value-based approaches outperform policy-based methods
and heuristics and even with limited synchronization (70%
SB), these approaches can achieve satisfactory performance
for the following reasons. Firstly, value-based methods achieve
a superior exploration-exploitation balance, facilitating more
comprehensive environmental learning. Secondly, they demon-
strate increased robustness to dynamic network conditions,
adapting more effectively to changes. Thirdly, their training
processes are more stable and sample-efficient due to the
incorporation of experience replay buffers.

V. CONCLUSION

In this paper, the limitations of existing SDN applications
for time sensitive applications were addressed by proposing a

novel solution to jointly satisfy latency requirements and min-
imize network costs. The controller synchronization problem
was formulated as a MDP, and RL techniques were applied
to approximate the optimal synchronization policy. Evaluation
results show that value-based approaches outperform in max-
imizing the total number of compliant network paths while
jointly minimizing network operator costs. These approaches
were compared with heuristic algorithms, demonstrating su-
perior performance.
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